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Abstract

A study is made of convection in an anisotropic porous medium saturated with water near 4°C, temperature at
which the density reaches its maximum value. The saturated porous medium is contained in a square cavity with
adiabatic horizontal walls and side walls subject to uniform temperatures. The parameters involved are the ratio of the
extremum permeabilities K*, the anisotropic angle 0 giving the inclination of the principal axes, the Rayleigh number R
and the inversion parameter 7y, this last parameter being related to the horizontal position of the pure conduction 4°C
isotherm relatively to the vertical walls. The problem is solved on the basis of the Darcy model and the Boussinesq
approximation through the use of a finite difference numerical approach. For the case where the principal axes are
parallel and perpendicular to the gravity vector, the Nusselt number is found to be maximum when the maximum
permeability is in the vertical direction. For cases with oblique axes, no symmetric flow and temperature fields can be
obtained at y = 1 (pure conduction 4°C isotherm midway between the two side walls), as it is the case for an isotropic
porous medium. Moreover, another difference with the isotropic case is the fact that the minimum Nusselt number does

not occur at y = 1 but at a value slightly different. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Over the past years, a substantial part of theoretical
and experimental investigations on convective heat
transfer in porous media has dealt with the case of iso-
tropic materials [1,2]. However, in many practical situ-
ations the porous materials are anisotropic in their
mechanical as well as thermal properties. Most of the
past studies on anisotropic porous media are concerned
with the case of fluids having a linear relationship be-
tween density and temperature [3-8]. In general, the
linear relationship is a good approximation for most
practical applications.

Convection in cold water, however, behaves in a
complicated manner when the temperature domain en-
compasses the 4°C, point at which the density of water
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reaches a maximum value. A few liquids, such as
gallium, tellurium and molten bismuth, also possess a
density extremum in their density temperature relation-
ship. Convection in such fluids is referred to as an in-
version density problem. Unusual flow patterns may be
expected in areas of water exposed to near freezing
temperature. The effect of inversion of density on heat
transfer in different kinds of enclosures has been con-
siderably investigated in the past. For instance, Watson
[9], Seki et al. [10], Inaba and Fukuda [11,12], and, more
recently, Ishikawa et al. [13] have considered the case of
pure water confined in rectangular enclosures. Convec-
tion in isotropic porous media saturated with cold water
and confined in rectangular cavities has been investi-
gated first by Altimir [14]. Recently, transient natural
convection of water near its density extremum, in a
rectangular cavity filled with an isotropic porous me-
dium, was investigated numerically by Chang and Yang
[15]. The top and bottom walls were insulated and uni-
form temperatures were imposed on the left and right
vertical walls, respectively. These authors showed that,
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Nomenclature

g gravity acceleration (m s72)
H' height of the cavity (m)
k saturated porous medium thermal
conductivity (W m~' K™
K permeability tensor
K,,K, permeability along the principal axes (m?)
K* permeability ratio, K* = K, /K,
Nu overall Nusselt number, Eq. (13)
P pressure (N m™?)
R Darcy Rayleigh number, R = gK,H' AT /v
Rh hydraulic resistivity, Eq. (14)
R standard Darcy Rayleigh number,

Ry = Lim(Rn[7])
R, modified Rayleigh number, R, = 2R/(1 + K*)
T dimensionless temperature, (7" — Ty ) /AT’
Ty, T{ temperatures on right and left boundaries (°C)

T, temperature of maximum density, 4°C
AT"  characteristic temperature difference, 7] — Ty
4

dimensionless time, of'o/H"

u,v  dimensionless velocity components in x and y
directions, W' H' /a, VH'/a

x,y  dimensionless coordinate system, x'/H', y//H’

Greek symbols

o thermal diffusivity, £/(pC); (m* s71)

Y inversion parameter, y = 2(7, — Ty ) /AT’

/ thermal expansion coefficient (°C~?)

v kinematic viscosity of the fluid, m? s~

p density of the fluid (kg m™)

PR reference density (kg m™)

(pC); heat capacity of fluid (J m ™ s~')

(pC), heat capacity of saturated porous medium
Im3sh

v dimensionless stream function, '/o

1

for y < 1, the size of the clockwise vortex beside the
high-temperature surface increases as time increases.
The clockwise vortex occupies almost the whole space
when the steady state is reached. However, for y =1,
two counter-rotating vortices having the same strength
are observed in the cavity when steady state is reached.
For y > 2, only one counterclockwise vortex exists in the
cavity.

Relatively little work has been done to study the ef-
fects of density inversion on the thermal convection
within anisotropic porous media, in spite of their com-
mon occurrence in northern climates. The purpose of the
present paper is aimed at a better understanding of such
flows. We consider here the particular case of an an-
isotropic porous medium of square shape filled with
water near its maximum density and subjected to side
heating. The Darcy’s flow model and a parabolic density
temperature relationship are used.

2. Formulation of the problem

The physical system of interest is shown in Fig. 1. It
consists of a square cavity of side H’, filled with a water-
saturated porous medium anisotropic in permeability.
Horizontal boundaries are adiabatic. Vertical left and
right boundaries are maintained at constant uniform
temperatures 7] and Ty, respectively. Principal axes are
shown with extremum permeabilities K; and K>, the
anisotropic angle 0 giving the orientation of the princi-
pal axis labeled K; with respect to the horizontal x’ axis.

The assumption of a Boussinesq incompressible fluid
is adopted for water and physical properties other than
the density in the buoyancy force are supposed constant.

The density is assumed to vary with temperature ac-
cording to a parabolic relationship of the form

P=Pm P~ P ;2

o . MT' =T, (1)
where py is a reference density. With 7/, = 3.98°C and
2 =8.0 x 1076 (°C) for water, the resulting equation is
valid for the range 0-8°C [16]. A relationship of higher
order (see for instance [17]) is not required since all the
essential features characterizing convection with a den-
sity extremum are reproduced with the simple form of
Eq. (1). An exhaustive view of the problem is then
possible with the addition of a single parameter, the
inversion parameter, to be defined later.

The continuity, momentum and energy conservation
equations that govern the flow and heat transfer inside
the enclosure are:

v

Fig. 1. Definition of the problem.
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V-V =0, (2)
=
V'=—(=Vp + Apg), 3)
T ! / 2t
o5tV VT = VT (4)

In the above equation, K’ is the second-order per-
meability tensor, 7’ the mass averaged velocity, g the
gravity vector, « = k/(pr C); the thermal diffusivity, and
o = (prC),/(prC); the heat capacity ratio.

From Eq. (1) it follows that the density difference
involved in Eq. (3) may be expressed as

Ap = (p = Pm) — (PR = Pm)
= pul2(T), — T)(T' = Ty) — (T' = Ty)?). (5)

The unknown variables of the present problem are
the velocity components («/,v'), pressure p' and tem-
perature 7”. It is convenient to introduce the stream
function /' defined as

! !
VLU (6)
oy’ o'
Such a definition of «’ and v automatically satisfies the
continuity equation (2). Using H', o, o/H' and AT’ =
T] — Ty as respective scales for length, stream function,
velocity and temperature, and taking the curl of the
momentum equation leads to the following dimension-
less equations:

Py Py Ry or

—+b — =R(y—-2T)— 7
o 0x0y te 0y? (v ) ox’ ™)
al + al + Ual — 627]‘ + all (8)
or " "ox dy 2 2’
where

a=cos>0+ K*sin> 0,
b= (1—-K")sin20, 9)

¢ =K"*cos? 0 +sin® 0.

In the above equations, R:ngH/)vAT’Z/(voc) is the
Darcy Rayleigh number and K* =K, /K, is the per-
meability ratio. The dimensionless temperature is de-
fined as 7 = (7" — T} )/AT'. The parameter 7, defined as
T —Tr

AT’

7 =2 (10)
is called the inversion parameter. It determines, in pure
conduction, the position of 7 with respect to the two
vertical boundaries. The standard case of linear con-
vection is recovered when y — oo, with R = lim,_,
(Iy|R), R, being the standard form of the Darcy Rayleigh
number used when p is linearly related to 7.

The governing parameters in the present problem are
the Rayleigh number R, the inversion parameter y, the

permeability ratio K* =K,/K;, and the anisotropic
angle 0.

Hydrodynamic boundary conditions on all solid
boundaries are

Y =0 (11)
while the thermal boundary conditions are given by
x=0,1: T=1,0,

y=0,1: %]; =0. (12)

The rate of heat transfer is given by the overall Nusselt
number evaluated on the left or right boundaries and
defined as

tor
Nu= [ —
“ /0 Ox

In order to isolate the effect of a change in perme-
ability ratio K* from the change in the overall hydraulic
resistivity (the hydraulic resistivity being the inverse of
the permeability [18]) it is appropriate to define a new
Rayleigh number. By considering the two hydraulic re-
sistivities along the principal axes, Rh; =1/K; and
Rhy = 1/K,, we define an overall hydraulic resistivity Rh
as

dy. (13)

x=0,1

7Rh1+Rh271K1+K2
- 2 T2 KK,

g
=

(14)

and a modified Rayleigh number as

_@ATPH 1 2R 15)
" v« Rh 14+K*

m

with the consequence that the extremum permeabilities
K, and K, have the same weight in this new Rayleigh
number.

3. Numerical approach

Governing Egs. (7) and (8) with boundary conditions
(11) and (12) were solved with a finite difference ap-
proach. The entire domain shown in Fig. 1 was dis-
cretized with a uniform mesh size. Eq. (7) was solved by
the method of successive over-relaxation and alternative
direction implicit (ADI) method was used to solve
Eq. (8). The advective terms were formulated by central
differences.

For the limiting case of an isotropic porous medium
(K* = 1), a comparison of overall Nusselt numbers with
those obtained by Ni and Beckermann [3] is presented in
Table 1. It can be seen that the present Nusselt numbers
fall within 2% of the calculations of Ni and Beckermann.

The present numerical procedure was also tested for
the linear range density-temperature by comparison
with Nusselt numbers obtained by Degan and Vasseur
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Table 1 Table 3
Comparison with the results of Ni and Beckermann [3] Mesh size independent test
Rayleigh number Ni Present Mesh size 40x40 60x60 80x 80 100x 100
100 3.103 3.124 Nusselt 4.3489 4.3700 4.3729 4.3733
500 8.892 9.000 number
1000 13.420 13.413

[7] for various Rayleigh numbers R;, permeability ratios
K* and anisotropic angles 0 (see Table 2). Flow and
temperature fields shown in [7] were also reproduced
with satisfying accuracy.

The effect of mesh size on the numerical simulation
was tested before the new method was applied to the
research. The case G in Table 2 was used to perform the
mesh size independent test. It was found with increasing
mesh size from 80 x 80 to 100 x 100, that less than
0.009% difference would happen between two Nusselt
numbers (see Table 3). So, 80 x 80 were used in most of
our research. Moreover, in order to keep all of the re-
sults independent of mesh size, a careful verification test
was done for each case.

4. Results and discussion

As described by many authors (see for instance [19])
the effect of density inversion on the convection of cold
water, confined in an enclosure, is to give rise to a
multicellular flow pattern, thus reducing the heat
transfer through the cavity. This statement remains true
for the present problem, as it will be illustrated by the
following results. In the present part, in addition to the
effect of the Rayleigh number R,, we will discuss in
order the separate effects of the inversion parameter y, of
the permeability ratio K*, of the anisotropic angle 0 and
finally of the combined effects of 6 and y.

4.1. Effect of the inversion parameter y (isotropic case
K =1)

For the case of a square cavity such as the one con-
sidered in the present study, the relative position,

xm = 1 —y/2, of the pure conduction 4°C isotherm with
respect to the two vertical boundaries will strongly in-
fluence the convective heat transfer and the associated
flow field. The numerical results (not presented here)
indicated that with 7y increasing toward large values, the
standard case of convection with linear density tem-
perature relationship is recovered. When y = 1, a sym-
metric flow is obtained. Such a behavior has already
been observed by many authors (see for instance
[20-22]).

The Nusselt number reaches its minimum value at
y = 1, as already found by Lin and Nansteel [22] and the
following relationship holds:

Nu(y) = Nu(2 — ) (16)

with corresponding flow fields being mirror images.

4.2. Effect of the permeability ratio K* (y = 1,0 =0)

As reported in the literature [20-22], a symmetric
flow field with two counter-rotating convective cells is
obtained for y=1 and K* = 1. This symmetry at
y = 1 remains for the anisotropic case with § = 0° and
90°.

Fig. 2 shows the Nusselt number Nu, defined in Eq.
(13), function of the permeability ratio K* for different
Rayleigh numbers R, (200, 400, 600 and 800), the an-
isotropic angle 0 being maintained at 0. Owing to the
definition of Ry, the overall hydraulic resistivity remains
constant along each curve of Fig. 2. From the behavior
of the curves in this figure, it is clear that a relative in-
crease of the vertical permeability will enhance the heat
transfer in the horizontal direction.

The effect of K* on the flow and temperature fields is
shown in Fig. 3(a)-(d), for R, =400, y =1 and 0 = 0°.

Table 2
Comparison with the results of Degan and Vasseur [7]
Case Rayleigh Permeability Anisotropic Mesh size, Present method, Degan and
number, R ratio, K* angle, 0 XXy Nu Vasseur [7], Nu
A 400 0.01 45° 100x120 11.483 11.313
B 400 1 45° 80x80 7.884 7.859
C 400 100 45° 80x 80 1.090 1.090
D 1 0.001 0° 80x 80 1.004 1.003
E 1 0.001 90° 80x 80 1.004 1.003
F 10,000 100 0° 100x 120 9.741 9.967
G 10,000 100 90° 80x 80 4.373 4.341
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Fig. 2. Nusselt number function of permeability ratio K* and
Rn (6=0°7y=1).
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Fig. 3. Flow and temperature fields at various K* (y = 1, Ry
400, 6 =0°): (&) Ypux = 13.77, Yy = —13.77, K* = 100 Nu =
5.07; (b) Ypax = 868, Vi = —8.68, K* =10, Nu =3.33; (¢)
Vinax = 489, Y = —4.89, K* =1, Nu = 1.97; (d) ¥,,.x = 316,
Vinin = —3.16, K* = 0.01, Nu = 1.55.

It is seen that the distortion of the isotherms is reduced
with K* decreasing, the amount of distortion being re-
lated to the importance of the convective heat transfer.
However, for each of the flow and temperature fields
shown in Fig. 3, the symmetry with respect to a vertical
line separating the cavity in two halves is preserved.

4.3. Effect of the anisotropic angle 0

Figs. 4 and 5 give the Nusselt number, Nu, and the
extremum values of the stream function, . and ,;,., as
functions of the orientation angle 0. The extremum values
Ve @and - respresent the intensities of the right and left
convective cells, respectively. In both Figs. 4 and 5, three
sets of curves are shown, corresponding to modified
Rayleigh numbers Ry, of 200, 400 and 800. For all those
curves, y and K* are kept constant at respective values of 1
and 0.1. Flow and temperature fields corresponding to

= 800 are shown in Fig. 6(a)—(e) for different values of
0 from 0° to 90°. We may observe in Fig. 4 the continuous
transition for Nu, from its minimum value to its maximum
value, with 0 increasing from 0° to 90°, i.e., when the
maximum permeability axis is tilted from the horizontal
to the vertical direction. In Fig. 5, |,;,| and ., are seen
to evolve from the value [, | = V. = 6.03at 0 = 0°to
the value |Y | = Y = 14.61 at 0 = 90°. This equal
intensity of the two counterrotating cells at 0° and 90° is
related to the symmetry described previously for the iso-
tropic case and the anisotropic case with 0 = 0°C.

Nu

N

o

o
3
B
8
8
38
3
<l
8
8

W min-max 8 R, =800
400
b

4 200

8 800 400

Fig. 5. Extremum values v, and ¥, function of 0 (y =1,
K*=0.1).
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Fig. 6. Flow and temperature fields at various 6 (R, = 800,
y=1, K*=0.1): (a) 0 =0° Y = 6.03, Yy, = —6.03, Nu=
2.33;(b) 0 = 35°% Ypax = 712, Y0 = =777, Nu=2.74; (c) 6 =
45° Yinax = 8.50, Yy = —11.01, Nu = 3.45;(d) 0 = 75° Y0 =
12.46, Y = —14.43, Nu=5.00; (e) 0=90° ., = 14.61,
Vimin = —14.61, Nu = 5.47.

However, for 0° < 6 < 90°, this symmetry does not exist,
as it can be observed in the sequence of flow and tem-
perature fields of Fig. 6. With 0 increasing from 0° to 90°,
[V min| decreases at first to reach a minimum value of about
5.5 at 0 =~ 13°, for the case R, = 800, whereas ¥, in-
creases continuously from 0° to 90°. Beyond 0 =~ 13°,
[V min| Starts increasing faster than vy, and || = Yoax
at 0 = 24°.

The following trivial periodicity holds for an aniso-
tropic porous medium:

¥(0) = (0 + nn),

7(0) = T(0 + ), (a7

where n = 1,2, ... Moreover, at y = 1, the left and right
cell intensities are related according to

0 (for Vi)
180 135 90 45 0
2 20
15 -15
4 10
Vines 10 Vi
5 5
0 0
0 e 0 1% 180
0 (for Vi)

Fig. 7. Extremum values V.. and V., function of 0 (R, =
800, y =1, K* =0.05).

lpmax((.)) = _Wmin(n - 0) (18)

From Eq. (18), it is therefore possible to represent
Vmin and ... as functions of 0, on a single curve such as
the one given in Fig. 7. One may notice in this figure that
the maximum value ¥, (or |¥;,|) occurs when the
maximum permeability axis is titled at an angle of about
5° off with respect to the vertical direction (90°) and that
the minimum value v, (or |[W,..|) occurs when the
maximum permeability axis is titled at an angle of about
9° off with respect to the horizontal direction.

4.4. Combined effect of y and 0

It has been mentioned that the Nusselt number
reaches its minimum value at y = 1 and the results are
symmetric according to Eq. (16), for an isotropic porous
medium. That symmetry was already observed by Lin
and Nansteel [22]. Moreover, at y =1 flow and tem-
perature fields are found to be symmetric with respect to
a vertical line separating the whole cavity in two equal
parts. This last symmetry of the flow and temperature
fields holds for K* # 1 (anisotropic medium) provided
that 0 = 0° or 90°. Fig. 8 shows the combined effect of y
and 0 on the Nusselt number. In this figure, the Rayleigh
number R,, and the permeability ratio K* have the re-
spective values 100 and 0.05. It is clear from this figure
that the symmetry of the curves with respect to y =1
does not exist anymore for the anisotropic medium with
oblique principal axes.

For the isotropic porous medium and also for the
anisotropic case with 6 = 0° or 90° the minimum Nusselt
number at y = 1 corresponds to a symmetric flow field,
the anisotropic case being shown in Fig. 6(a) and (e),
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Fig. 8. Nusselt number function of y at various 6 (R, =
100, K* = 0.05).

@

i K\

Fig. 9. Flow and temperature fields at 0 =67.5° (R, =
100, K* = 0.05): (a) Y pux = 2-545, Yy = —2.855, Nu = 1.3954,
y=1.09; () Ypax = 2.573, Ypin = —2.564, Nu = 1.4002, y =
1.12.

with || = Vi Such a symmetry at minimum Nu
does not exist anymore when 0 # 0° or 90° for an an-
isotropic porous medium. For instance, Fig. 9(a) and (b)
shows the flow and temperature fields for K* = 0.05,
R, =100, 0 = 67.5°, at two different values of y. Fig.
9(a), corresponds to the minimum value of Nu, obtained
at y=1.09 (see Fig. 8), with |J,;,| =2.86 and
Vax = 2.55. Fig. 9(b) obtained at y = 1.12 shows two
cells with equal intensity |W,| = Ym. =~ 2.56, but
without symmetric flow field.

5. Conclusions

The effects of density inversion characterizing water
near 4°C have been investigated for the case of an an-

isotropic porous medium, saturated with water, con-
tained in a square cavity, the two vertical side walls
being maintained at uniform temperatures. Numerical
results were obtained for various anisotropic angles 0,
permeability ratios K* and values of the inversion pa-
rameter 7, this last parameter being directly related to
the horizontal position of the pure conduction maxi-
mum density with respect to the side walls.

Results with 0 =0° and 90° (horizontal/vertical
principal axes) indicate that the maximum convection
and heat transfer occur when the maximum permeability
is in the vertical direction. With oblique axes (6 # 0° or
90°), it was found that the symmetry of flow and tem-
perature fields observed for the isotropic porous medium
at y =1 (value for which the temperatures of the side
walls are equidistant from the maximum density tem-
perature of 4°C) does not exist anymore for the aniso-
tropic porous medium. Moreover, for those conditions,
the minimum Nusselt number does not occur at y =1,
but is shifted slightly above or below unity, at a value for
which the symmetry of flow and temperature field is not
recovered.
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